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ABSTRACT
Diabetic Retinopathy (DR) is one of the most common causes of
blindness in adults. The need for automating the detection of DR
arises from the deficiency of ophthalmologists in certain regions
where screening is done, and this paper is aimed at mitigating this
bottleneck. Images from publicly available datasets STARE, HRF,
and MESSIDOR along with a novel dataset of images obtained
from the Retina Institute of Karnataka are used for training the
models. This paper proposes two methods to automate the detec-
tion. The first approach involves extracting features using retinal
image processing and textural feature extraction, and uses a Deci-
sion Tree classifier to predict the presence of DR. The second ap-
proach applies transfer learning to detect DR in fundus images. The
accuracies obtained by the two approaches are 94.4% and 88.8%
respectively, which are competent to current automation methods.
A comparison between these models is made. On consultation with
Retina Institute of Karnataka, a web application which predicts
the presence of DR that can be integrated into screening centres
is made.
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1. INTRODUCTION
Diabetic Retinopathy (DR) is caused by high blood sugar lev-

els which affect blood vessels in the retina. It is predicted that the
number of people suffering from DR would grow from 126.6 mil-
lion in 2010 to 191 million by 2030[1]. DR is diagnosed by oph-
thalmologists through the analysis of retinal fundus images, which
is exacting and time-consuming. Automating the detection of DR
would reduce the burden on the ophthalmologists so that they can
focus on the patients in need, and will allow more patients to be
screened.

Some of the manifestations in the retinal fundus image from
which the pathology can be detected are hard and soft exudates,
red lesions, and venous loops. The feature extraction and classifi-
cation approach in this paper focuses on the detection of exudates
and red lesions as these are the most prominent signs of DR. In ad-
dition to these, it also uses the textural features extracted from the
image to classify it. The transfer learning approach takes into ac-
count the features of the image that the deep learning model finds
to be the most significant for classification, which is determined by
the model after being trained with sufficient images. The doctors
in Retina Institute of Karnataka [2] were consulted for this study,
and based on their inputs, an end to end web application which pre-
dicts the presence of DR given a retinal fundus image, which can
be integrated into screening centres was developed. Utilising the
diagnosis predicted by the application, the medical practitioners in
the screening clinics can accordingly refer the patients in need to
ophthalmologists.

The rest of this paper is organised as follows: Section 2 high-
lights the previous research done on automating the detection of
DR. Section 3 details the implementation of the proposed approaches
for the detection of DR. Section 4 involves the results and discus-
sion of the methods used. Section 5 holds the conclusion of this
paper.

2. RELATED WORK
Previous research and work done on automating the detection of

Diabetic Retinopathy are discussed below:
Grace and Kajamohideen[3] developed a Computer-Aided Diag-

nostic system to classify images with DR. Image processing tech-
niques including colour space conversion, Kirsch’s template and
histogram equalization were employed to detect exudates present
in the image. Seven morphological features were extracted from
the processed image. These features were input to an RBF-kernel
SVM classifier to predict the presence of DR. This method illus-
trated good performance, but was restricted to the identification of
exudates. According to the Diabetic Retinopathy Disease Sever-
ity Scale and International Clinical Diabetic Retinopathy Disease
Severity Scale, there are many cases in Nonproliferative DR where
exudates are not present[4]. These cases will go undetected by this
approach.

Pratt et al. [5] proposed a CNN approach to diagnose and classify
the severity of DR. The severity classes include no DR, mild DR,
moderate DR, severe DR and proliferative DR. Max pooling was
performed using a kernel with size 3x3 and strides 2x2. The CNN
was flattened into one dimension after the last convolutional block.
Overfitting was avoided using class weights relative to the number
of images in the respective class. Images input to the classifier
were subjected to colour normalisation and resized into 512x512



pixels. The Kaggle dataset was used to test this system and it gave
an accuracy of 75%.

On interacting with doctors from multiple eye hospitals, it was
found that although much research has been done on automating
the detection of common medical conditions, there is no software
that is currently being used by clinics or hospitals to automate the
detection of DR. This paper describes an approach that could serve
as a tool which can be integrated into screening clinics.

3. MATERIALS AND METHODS
3.1 Data Collection

Anonymised retinal fundus images obtained from the Retina In-
stitute of Karnataka were used, along with images from the publicly
available STARE [6] dataset for the feature extraction and classifi-
cation approach. For the Transfer Learning approach, images from
STARE, HRF [7] and Messidor [8] datasets were used to train the
model.

3.2 Feature Extraction and Classification
Approach

The feature extraction approach involved the detection of the
most common manifestations of DR - exudates and red lesions, in
the fundus image. The areas of these manifestations along with the
textural features of the image, were input to an Information Gain
Decision Tree classifier to predict the presence of DR.

3.2.1 Exudates Detection
3.2.1.1 Image Preprocessing.

The retinal image was masked around the field of view (FOV)
using Hough circle detection [9]. A good contrast between the ex-
udates and the background, as well as between the optic disc and
the background is provided by the green channel. Thus, the green
channel was used for the exudates detection and for making the op-
tic disc mask.

3.2.1.2 Optic Disc mask creation.
Contrast Limited Adaptive Histogram Equalization [10]

(CLAHE) was applied to enhance the contrast of the green chan-
nel of the image. To the result of this step, 2-D first derivative of
Gaussian Matched Filter with dynamic thresholds corresponding to
the image was applied. The maximum intensity point in the filtered
image was found. This point corresponds to the optic cup, which is
the brightest region of the optic disc. Using the average cup to disc
ratio and size of the retina, a mask of optic disc was created using
the optic cup as center. Important stages involved in the creation
of optic disc mask are shown in Figure 1: For the image shown in
Figure 1(a), the resultant image formed by applying CLAHE to the
inversion of its green channel is shown in Figure 1(b). Figure 1(c)
is the filtered image and Figure 1(d) shows the optic disc mask.

3.2.1.3 Detection of Exudates.
Illumination Equalisation was applied to the preprocessed image

to overcome uneven illumination of the images and to make all the
images belong to approximately the same intensity range.

IE(Image) = Box51(Image)−128 (1)

where IE represents Illumination Equalisation and Box51 repre-
sents a Box filter of size 51 x 51

A 2-D first derivative of Gaussian Matched filter was used to
convolve over the illumination equalised image. Optic disc was
masked from the filtered image. This is illustrated in Figure 2.
Figure 2(a) shows the Illumination equalised image. Figure 2(b)

(a) (b)

(c) (d)

Figure 1: Optic Disc mask creation stages: For the image
shown in (a) the resultant image formed by applying CLAHE
to the inversion of its green channel is shown in (b). (c) is the
filtered image and (d) shows the optic disc mask

shows the result of applying the exudates detection algorithm on
Figure 1(a)

(a) (b)

Figure 2: Exudates detection: (a) Illumination equalised im-
age (b) Result of applying the exudates detection algorithm on
Figure 1(a)

3.2.2 Red Lesions Detection
A good contrast between the red lesions and the background is

provided by the green channel. To prevent the aberrant detection of
bright regions (exudates and optic disc), a low intensity difference
between them and the background is required, which is prominent
in the red channel. To utilise the advantages of both the channels,
the image formed by modifying the histogram of the green chan-
nel in accordance with that of the red channel was used. IE was
employed to this image using Equation(1).

Simple image enhancement techniques like CLAHE and Con-
trast Stretching were used to enhance the contrast of the image
while limiting the amplification of noise. This was followed by a
2-D Gaussian Matched Filter to match red lesion templates. The re-
sulting image consisted of red lesions and blood vessels, which are
similar in structure and colour, along with some noise. An open-
ing morphological transformation with an elliptical kernel of size
7 was applied to the filtered image. Adaptive Gaussian Threshold-



ing, CLAHE and denoising were used on the filtered image to form
the blood vessel mask. The blood vessel mask was applied to the
morphologically transformed image to obtain the red lesions. The
important stages in red lesions detection is illustrated in Figure 3:
3(a) is the original image, 3(b) is the histogram matched image,
3(c) is the filtered image 3(d) is the morphologically transformed
image, 3(e) shows the blood vessel mask and 3(f) illustrates the red
lesions detected.

(a) (b)

(c) (d)

(e) (f)

Figure 3: Important stages in red lesions detection: (a) Origi-
nal image (b) Histogram matched image (c) Filtered image (d)
Morphologically transformed image (e) Blood vessel mask (f)
Red lesions detected

3.2.3 Textural Feature Extraction
Textural features [11] are quantifications of various textures per-

ceived from an image. A grey level co-occurrence matrix (GLCM)
was used for the calculation of the textural features of each image.
To increase the accuracy of image classification and to make it less
sensitive to the scale of each textural feature, the GLCM was nor-
malised. 15 textural features were extracted, namely ASM, Energy,
Dissimilarity, Entropy, Contrast, Correlation, Homogeneity, Sum
of squares variance, Sum Average, Sum Variance, Sum Entropy,
Difference Variance, Difference Entropy, Information Measure of
Correlation - 1, and Information Measure of Correlation - 2, which
are calculated using the formulae in Table 1.

3.2.4 Classification
The exudates area, red lesions area, and the 15 textural features

extracted were input to Gini and Information Gain Decision Trees,
Support Vector Machine with RBF Kernel and Linear Kernel and
Feedforward Artificial Neural Network classifiers. The number of
images of class DR was 89, while the number of images of class
Normal (Healthy - No DR) was 25. To prevent class-bias and over-
fitting of the classifiers, stratified 5-fold cross validation was used.
Table 2 shows the performance comparison of the classifiers. Since
the Decision Tree with Entropy as the criterion for splitting had the

best cross validation accuracy and performance, it was the chosen
as the final classifier for the feature extraction approach.

3.3 Transfer Learning
Transfer learning [12] was introduced to make machine learning

systems leverage the knowledge learnt from the previous tasks for
the current task. It has successfully been used to transfer knowl-
edge and improve models from one domain with enough data to
learn from, to a similar domain where not enough data is avail-
able. GoogleNet Inception-v3 [13], a deep Convolutional Neural
Network (CNN) [14] with 22 layers was trained for the ImageNet
challenge to classify 1,000,000 images into 1,000 classes. This pre-
trained Inception-v3 deep CNN was used for image classification.
The final layer of the CNN was re-trained to classify the images
as DR and Normal. A total of 601 images labelled "Normal" and
761 images labelled "DR" from the online datasets HRF, STARE,
and Messidor were used for training. An accuracy of 88.8% was
obtained over the test dataset which was a combination of images
provided by the Retina Institute of Karnataka along with images
from the STARE dataset.

4. RESULTS AND DISCUSSION
The image processing, textural feature extraction and classifica-

tion approach was developed using Open Source Computer Vision
(OpenCV). This approach achieved an accuracy of 94.4% over a
subset of the images in the STARE dataset, along with the dataset
provided by the Retina Institute of Karnataka

TensorFlow was used to retrain the final layer of the pre-trained
Inception-v3 deep CNN to classify the images as DR or Normal.
Having an accuracy of 88.8% over the test dataset, the performance
of this approach was slightly lower than the feature extraction ap-
proach.

To accomodate images from fundus cameras with varying focal
length and images with varying illumination, the image processing
method modifies all its images to match a baseline. During this
process, some critical features of images with a different baseline
may get obscured. This would reduce its performance with such
images. However, it would perform very well with images having
configurations similar to its baseline.

The transfer learning method uses a deep CNN which can cap-
ture all kinds of local and more abstract features of the image, and
learns to adapt to different dataset configurations with increased
range of datasets and images supplied for training the model, so
it does better given a random image from any dataset or fundus
camera, compared to the image processing method, but does not
perform as well as the image processing method for images with a
similar baseline.

The image processing method would be better suited for instances
where the configuration of the images that will be input to it is
known beforehand, and would perform well in screening clinics
where the same fundus camera would be used to capture the retinal
images. The transfer learning method would be of better use where
the configuration of the image is not known, so it can be used in a
website hosted on the internet for people to check the prediction of
DR for a given retinal image from any dataset.

5. CONCLUSIONS
Two methods were used to detect the presence of DR in reti-

nal fundus images. The first method employed image processing,
textural feature extraction and classification using a decision tree
with information gain classifier. The second method used Transfer
Learning on the pre-trained GoogleNet Inception-v3 CNN. Both



Table 1: Textural Features Used
Texture Feature Formula

ASM
∑

levels−1
i, j=0 P2

i, j

Energy √
ASM

Dissimilarity
∑

levels−1
i, j=0 Pi, j|i− j|

Entropy −∑i ∑ j p(i, j) log(p(i, j))

Contrast
∑

levels−1
i, j=0 Pi, j(i− j)2

Correlation
∑

levels−1
i, j=0 Pi, j

[
(i−µi)( j−µ j)√

(σ2
i )(σ

2
j )

]

Homogeneity
∑

levels−1
i, j=0

Pi, j

1+(i− j)2

Sum of squares variance
∑i ∑ j (i−µ)2 p(i, j)

Sum Average
∑

2Ng
i=2 ipx+y(i)

Sum Variance
∑

2Ng
i=2 (i− f8)

2 px+y(i)

Sum Entropy
−∑

2Ng
i=2 px+y(i) log{px+y(i)}

Difference Variance
∑

Ng−1
i=0 i2 px+y(i)

Difference Entropy
−∑

Ng−1
i=0 px−y(i) log{px−y(i)}

Information Measure
of Correlation - 1

HXY −HXY 1
max(HX ,HY )

, where

HXY 1 =−∑i ∑ j p(i, j)log{px(i)py( j)}

and HXY =−∑i ∑ j p(i, j)log(p(i, j))

Information Measure
of Correlation - 2

(1− exp[−2(HXY 2−HXY )])1/2 ,where

HXY 2 =−∑i ∑ j px(i)py( j)log{px(i)py( j)}

and HXY =−∑i ∑ j p(i, j)log(p(i, j))

Table 2: Classifier Comparison
Classifier Mean Accuracy Mean Precision Mean Recall F1 Score

Decision Tree
(Gini) 0.849 0.919 0.836 0.876

Decision Tree
(Information Gain) 0.944 0.926 0.953 0.939

SVM
(RBF Kernel) 0.782 0.890 1 0.942

SVM
(Linear Kernel) 0.765 0.893 0.944 0.917

Feedforward Artificial
Neural Network 0.776 0.889 0.993 0.938

Logisitic Regression 0.761 0.874 0.930 0.901



methods demonstrated good performance.
A web application was developed which would take as input

a fundus image, and output the prediction of whether the image
shows signs of DR or not. The screening clinics can integrate this
tool with their systems so that the technician can refer the patients
with the pathology to ophthalmologists.

The authors are currently collaborating with the doctors of Retina
Institute of Karnataka to integrate the web application in diabetic
screening centres.
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